skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Laureano, Rosário"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ribeiro, Pedro; Silva, Fernando; Mendes, José Fernando; Laureano, Rosário (Ed.)
    The availability of large datasets composed of graphs creates an unprecedented need to invent novel tools in statistical learning for graph-valued random variables. To characterize the average of a sample of graphs, one can compute the sample Frechet mean and median graphs. In this paper, we address the following foundational question: does a mean or median graph inherit the structural properties of the graphs in the sample? An important graph property is the edge density; we establish that edge density is an hereditary property, which can be transmitted from a graph sample to its sample Frechet mean or median graphs, irrespective of the method used to estimate the mean or the median. Because of the prominence of the Frechet mean in graph-valued machine learning, this novel theoretical result has some significant practical consequences. 
    more » « less